
Greedy Approximation Algorithm for Facility Location*1

• In this lecture note, we see a much more sophisticated algorithm and analysis for a problem called the
metric (uncapacitated) facility location problem. The problem is fundamental, and we will see many
different algorithms for this in the course.

• Facility Location. In the (uncapacitated) facility location (UFL) problem, we are given a set F of
facilities, a set C of clients, and a metric d(·, ·) in F ∪ C. Each facility i ∈ F has an opening cost
fi. The objective is to open X ⊆ F and connect clients via assignment σ : C → X to nearest open
facility, to minimize

cost(X) =
∑
i∈X

fi +
∑
j∈C

d(σ(j), j)

If the connection costs form a metric, that is, satisfy the triangle inequality

d(i, j) ≤ d(i, j′) + d(j′, i′) + d(i′, j), ∀i, i′ ∈ F, j, j′ ∈ C

then the problem is called the metric UFL.

• Greedy Algorithm. An algorithm for UFL has to open facilities, and then assign clients to open
facilities. Opening a facility i incurs an opening cost fi, and connecting a subset Y ⊆ C of clients
to i costs d(Y, i) :=

∑
j∈Y d(i, j). Taking a hint from the greedy set-cover algorithm, in each step

we may want to find a facility i and a subset of uncovered clients Y such that fi+d(Y,i)|Y | is minimized.
And then continue till all clients are covered.

We notice that the above stated algorithm has (at least) one glaring weakness : we may end up as-
signing clients to an open facility which is not closest to it. Indeed, suppose in the first iteration we
open facility i1 and connect subset Y1 of clients to it. Now, in the second iteration when we open
facility i2, it may just so happen that d(i1, j) > d(i2, j) for some j ∈ Y . At this point, the algorithm
should re-assign j to i2 thus decreasing the connection cost by d(i1, j)− d(i2, j). In short, when we
open a facility, the algorithm should also take into account the potential “drop” in connection costs of
already-connected clients.

More precisely, the algorithm maintains a setX ⊆ F of open facilities andD ⊆ C, a set of “covered”
clients. It also maintains an assignment σ : D → X indicating where these clients are assigned. For
every facility i ∈ F , letD′ ⊆ D be the covered clients j which are closer to i than to σ(j) ∈ X where
they are currently assigned. Thus, if we open i, we will definitely get a drop in the connection costs
due to clients in D′. To this end, define

δ(D, i) :=
∑
j∈D

max(0, d(σ(j), j)− d(i, j))

to denote this drop. In each greedy step, we choose a facility i and a non-empty subset of not-yet-
covered clients Y , so as to minimize the total cost fi + d(Y, i) − δ(D, i) divided by |Y |. A crucial

1Lecture notes by Deeparnab Chakrabarty. Last modified : 9th Jan, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1

observation here is that in one of these steps, we may in fact choose a facility i ∈ X , in which
case we don’t pay the opening cost again and nor do we get any saving, but rather we only consider
d(Y, i)/|Y |.

1: procedure GREEDY-UFL(F ∪ C, d):
2: . X denotes the set of facilities opened and D denotes the set of covered clients.
3: . Each client in D is assigned a facility in X via assignment σ : D → X .
4: Initially X,D ← ∅, and σ ← ⊥.
5: while D 6= C do:
6: . For a facility i, let D′ ⊆ D be the set of clients j ∈ D who are closer to i than

their currently assigned facility, that is, d(i, j) < d(σ(j), j).
7: . Let δ(D, i) :=

∑
j∈D max(0, (d(σ(j), j)− d(i, j)) denote the reduction in con-

nection costs among clients in D if i is opened.
8: Pick a facility i and a set of unassigned clients Y ⊆ C \D so as to minimize

Φ(i, Y) :=
0i∈X · fi +

∑
j∈Y d(i, j)− δ(D, i)
|Y |

where 0i∈X is 0 if i ∈ X , and equals 1 otherwise. . How much time does this step take?
9: . Note if i ∈ X , then δ(D, i) = 0.

10: X ← X ∪ i; D ← D ∪ Y
11: For all j ∈ Y ∪D′, assign σ(j)← i.

Exercise: K How will one efficiently implement Line 8? As written it seems like going over all
subsets. Show how to implement this using a greedy algorithm, and argue why it is correct.

Analysis

Theorem 1. GREEDY-UFL is a 2-approximation.

• Let’s fix some notation. Let X∗ be the set of facilities opened by the optimal algorithm. Let σ∗

be the assignment of clients to X∗ of the optimal solution. Given a client j, let d∗j := d(σ∗(j), j).
We let F ∗ =

∑
i∈X∗ fi and C∗ =

∑
j∈C d

∗
j . Note that opt = F ∗ + C∗. Similarly, let X be the

facilities opened by GREEDY-UFL, and let σ be the final assignment. Let dj := d(σ(j), j), and
Falg =

∑
i∈X fi, and Calg =

∑
j∈C dj . Note that alg = Falg + Calg.

• As in the set-cover problem, we apply the “charging trick”. Fix a client j and consider the first
iteration when it enters D. This occurs when we choose a facility i (which can already be in X) and
a subset Y which contains j. Assign a charge

αj :=
0i∈X · fi +

∑
j∈Y d(i, j)− δ(D, i)
|Y |

Note that j could be re-assigned later on to a different facility, but we do not modify αj .

2

• We now make a key observation that at the end of the algorithm, the sum of charges on the clients is
precisely the algorithm’s cost.

alg = Falg + Calg =
∑
j∈C

αj (1)

To see this, at every iteration |Y | clients get the same αj , and they sum to the numerator. The sum of
the numerators over all iterations is precisely the facility opening costs plus the final connection costs
with δ(D, i)’s taking care of the drop of connection costs an individual client may face along the run
of the algorithm.

• Now fix any facility i ∈ F and any subset Z ⊆ C of clients. We now make the following key claim.

Lemma 1. For any facility i and any subset Z ⊆ C,
∑

j∈Z αj ≤ fi +
(

2− 1
|Z|

)
d(Z, i) where

d(Z, i) :=
∑

j∈Z d(i, j).

Before we prove the lemma, let us see how it implies Theorem 1. Consider the facilities i ∈ X∗,
and for each such i let Zi be the subset of clients assigned to i in the optimum solution. Thus,
F ∗ =

∑
i∈F ∗ fi and C∗ =

∑
i∈X∗ d(Zi, i). Applying Lemma 1 for (i, Zi) for i ∈ X∗, we get∑

i∈X∗

∑
j∈Zi

αj︸ ︷︷ ︸
=

∑
j∈C αj = alg

≤
∑
i∈X∗

fi︸ ︷︷ ︸
= F ∗

+ 2 ·
∑
i∈X∗

∑
j∈Zi

d(i, j)

︸ ︷︷ ︸
= C∗

Thus, alg ≤ F ∗ + 2C∗ ≤ 2opt giving us the proof of Theorem 1.

• Proof of Lemma 1. Let k := |Z| and order these k clients in the order in which they first covered by
the algorithm, or more precisely, in the order they first are added to D. For simplicity, we assume that
each of these clients appear in D at distinct loops; we leave it to the reader to notice that not having
this assumption makes the analysis below only better. We rename these clients in Z as (1, 2, . . . , k)
in this order.

Now consider the iteration of the algorithm where client j ∈ Z is added to D. At this juncture, some
facility i is chosen (note i could already be in X) along with a set of clients Y containing j. Let D be
the set of covered clients just before this decision, and let σ be the assignment of these clients in D at
that point. By the greediness of the algorithm, we can infer that αj ≤ Φ(i′, Y ′) for any other facility
i′ and subset Y ′. We now find some specific i′s and Y ′s to obtain usable upper bounds on αj .

– Note that by the ordering, all ` < j are already in D. Thus one possible choice for the algorithm
was to not open any new facility but rather choose i′ = σ(`) and Y ′ = {j}, that is, connect j to
where ` is connected. This puts the following upper bound on αj . (See Figure 1 left side for an
illustration.)

∀` < j, αj ≤ d(σ(`), j)

Now, and in fact the only place, we use metric-ness of the problem. We upper bound d(σ(`), j)
by noting that j could travel to i then to ` and then to σ(`). This givesαj ≤ d(σ(`), `) + d(i, j)+
d(i, `). Adding for all ` < j, gives

(j − 1)αj ≤
∑
`<j

d(σ(`), `) + (j − 1)d(i, j) +
∑
`<j

d(i, `) (2)

3

– Another possible choice of the algorithm is to add the facility i′ = i and the set Y ′ := {` : ` ≥
j}. This gives us the following upper bound on αj

αj ≤
0i∈X · fi +

∑
`≥j d(i, `)− δ(D, i)

(k − j + 1)

We now use (a) 0i∈X ≤ 1, and (b) δ(D, i) ≥
∑

`<j (d(σ(`), `)− d(i, `)). To see why (b),
consider reassigning clients in {1, . . . , j − 1} to i (see Figure 1 right side for an illustration).
This could be sub-optimal, but we only need a lower bound on the drop. Substituting, and
rearranging, we get

(k − j + 1) · αj ≤ fi + d(Z, i)−
∑
`<j

d(σ(`), `) (3)

jℓ

i

jℓ

i𝜎 ℓ 𝜎 ℓ

Figure 1: An illustration for the above upper bounds.

• Now we are almost done and all that remains is arithmetic. We add (3) and (2) to get

For all j ∈ Z, kαj ≤ fi + d(Z, i) + (j − 1)d(i, j) +
∑
`<j

d(i, `)

Summing this for all j ∈ Z and dividing by k = |Z|, we get∑
j∈Z

αj ≤ fi + d(Z, i) +

∑k
j=1(j − 1)d(i, j) +

∑k
i=1

∑
`<j d(i, `)

k

It takes a slight stare, but note that the numerator of the fraction above is precisely (k − 1)d(Z, i),
which proves the lemma.

Notes

The greedy algorithm described above is present in the paper [2] by Jain, Mahdian, Markakis, Saberi, and
Vazirani. However, the description is couched differently as a primal-dual algorithm, something which we
encounter in later lectures. The paper contains two algorithms, and the algorithm in this notes is essentially
Algorithm 2. The above analysis is essentially present in Section 8 of the JACM paper.

Jain et al. [2] actually prove that the approximation factor of the above algorithm is ≤ 1.61. However,
note that the above analysis an (1, 2)-approximation in the sense the algorithm’s cost pays at most twice the
optimal connection cost plus once the optimal facility opening cost. Such asymmetry can be exploited via a
“greedy augmentation” trick present in [1] to get a better factor. The current best approximation factor for
UFL is 1.488 and is present in the paper [3] by Li. It is known that unless P = NP , the best approximation
one could hope for is 1.463. The latter result is present in [4].

4

References

[1] M. Charikar and S. Guha. Improved Combinatorial Algorithms for the Facility Location and k-Median
Problems. In Proc., IEEE Symposium on Foundations of Computer Science (FOCS), 1999.

[2] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani. Greedy facility location algorithms
analyzed using dual fitting with factor-revealing LP. Journal of the ACM, 50(6):795–824, 2003.

[3] S. Li. A 1.488 approximation algorithm for the uncapacitated facility location problem. Information
and Computation, 222:45–58, 2013.

[4] Sudipto Guha and Samir Khuller. Greedy Strikes Back: Improved Facility Location Algorithms. Journal
of Algorithms, 31(1):228–248, Apr. 1999.

5

